36,628 research outputs found

    Study of the Brazil and Falkland currents using their images of Nimbus 5 and oceanographic data in 1972 - 1973

    Get PDF
    The Western Edge of the Sub-tropical Convergence of the South-western Atlantic Ocean, called the Front, which is a thermal discontinuity between the Brazil and Falkland Currents, was studied utilizing the Temperature Humidity Infrared Radiometer (THIR) of Nimbus V in the 10.5 to 12.5 micrometers channel and historical oceanographic data. Some important results obtained are: the oceanographic Front could be detected from Nimbus THIR data; oceanographic charts showed that the transition zone where the Brazil and the Falkland Currents meet was the Front detected from satellite data; ocean current speeds calculated with THIR data were of the same order of magnitude as those calculated oceanographically; fisheries statistics for Pargo Roseo showed that the maximum catches were in September of 1973, in the period when the Front was observed most distinctly and clearly. The results showed the great potentiality of satellite data to study surface thermal structures, surface currents and oceanic fisheries

    Decohering d-dimensional quantum resistance

    Get PDF
    The Landauer scattering approach to 4-probe resistance is revisited for the case of a d-dimensional disordered resistor in the presence of decoherence. Our treatment is based on an invariant-embedding equation for the evolution of the coherent reflection amplitude coefficient in the length of a 1-dimensional disordered conductor, where decoherence is introduced at par with the disorder through an outcoupling, or stochastic absorption, of the wave amplitude into side (transverse) channels, and its subsequent incoherent re-injection into the conductor. This is essentially in the spirit of B{\"u}ttiker's reservoir-induced decoherence. The resulting evolution equation for the probability density of the 4-probe resistance in the presence of decoherence is then generalised from the 1-dimensional to the d-dimensional case following an anisotropic Migdal-Kadanoff-type procedure and analysed. The anisotropy, namely that the disorder evolves in one arbitrarily chosen direction only, is the main approximation here that makes the analytical treatment possible. A qualitatively new result is that arbitrarily small decoherence reduces the localisation-delocalisation transition to a crossover making resistance moments of all orders finite.Comment: 14 pages, 1 figure, revised version, to appear in Phys. Rev.

    Bose-Einstein condensation of triplons in the S=1 tetramer antiferromagnet K2Ni2(MoO4)3: A compound close to quantum critical point

    Full text link
    The structure of K2Ni2(MoO4)3 consists of S=1 tetramers formed by Ni^{2+} ions. The magnetic susceptibility chi(T) and specific heat Cp(T) data on a single crystal show a broad maximum due to the low-dimensionality of the system with short-range spin correlations. A sharp peak is seen in chi(T) and Cp(T) at about 1.13 K, well below the broad maximum. This is an indication of magnetic long-range order i.e., the absence of spin-gap in the ground state. Interestingly, the application of a small magnetic field (H>0.1 T) induces magnetic behavior akin to Bose-Einstein condensation (BEC) of triplon excitations observed in some spin-gap materials. Our results demonstrate that the temperature-field (T-H) phase boundary follows a power-law (T-T_{N})propotional to H^(1/alpha) with the exponent 1/alpha close to 2/3, as predicted for BEC scenario. The observation of BEC of triplon excitations in small H infers that K2Ni2(MoO4)3 is located in the proximity of a quantum critical point, which separates the magnetically ordered and spin-gap regions of the phase diagram.Comment: 5 pages, 5 figures, Accepted in Phys. Rev. B Rapid Communication

    Target following camera system based on real-time recognition and tracking

    Get PDF
    A real-time moving target following camera system is presented in this study. The motion of the camera is controlled based on the real-time recognition and tracking of the target object. Scale Invariant Feature Transform (SIFT) based recognition system and Kanade-Lucas-Tomasi (KLT) tracker based tracking system is presented to recognize and track the moving target. SIFT algorithm is slow but efficient in recognizing the objects even though they undergone some affine transformations. KLT tracker algorithm is simple and has reduced computations, hence improves the tracking performance. The analysis is performed in hardware which consists of a camera mounted on a two servo motor setup, one for pan and other for tilt, and an Arduino board capable of handling the movement of two servo motors. As there is hardware implementation, a computationally simplified technique is employed. Since both SIFT and KLT tracker are feature based techniques, we pass the features extracted by SIFT to KLT tracker for simplifying the process. The recognition and tracking tasks are performed in PC and the PWM signals are generated accordingly and sent to servo motors through Arduino. The proposed algorithm is able to track objects even in its absence for a certain while

    PiRaNhA: A server for the computational prediction of RNA-binding residues in protein sequences

    Get PDF
    The PiRaNhA web server is a publicly available online resource that automatically predicts the location of RNA-binding residues (RBRs) in protein sequences. The goal of functional annotation of sequences in the field of RNA binding is to provide predictions of high accuracy that require only small numbers of targeted mutations for verification. The PiRaNhA server uses a support vector machine (SVM), with position-specific scoring matrices, residue interface propensity, predicted residue accessibility and residue hydrophobicity as features. The server allows the submission of up to 10 protein sequences, and the predictions for each sequence are provided on a web page and via email. The prediction results are provided in sequence format with predicted RBRs highlighted, in text format with the SVM threshold score indicated and as a graph which enables users to quickly identify those residues above any specific SVM threshold. The graph effectively enables the increase or decrease of the false positive rate. When tested on a non-redundant data set of 42 protein sequences not used in training, the PiRaNhA server achieved an accuracy of 85%, specificity of 90% and a Matthews correlation coefficient of 0.41 and outperformed other publicly available servers. The PiRaNhA prediction server is freely available at http://www.bioinformatics.sussex.ac.uk/PIRANHA. © The Author(s) 2010. Published by Oxford University Press

    Variability assessment and construction of infectious clone of Indian Apple Scar Skin Viroid

    Get PDF
    Apple scar skin viroid (ASSVd) is widely distributed and economically important pome-fruit infecting viroid belonging to the genus Apscaviroid. It causes huge economic losses to the apple industry. Apple fruits with dappling, scarring, cracking and deformation symptoms were noticed during survey of apple growing regions of Himachal Pradesh, India. ASSVd was detected from four isolates showing dappled fruits. Molecular characterization of the viroid was done. Ten clones each from five isolates were sequenced out of which seven new sequence variants of ASSVd were found. Four of the clones were 330 nucleotides (nt) long and the other eight had an additional nucleotide. The clones showed significant sequence variability (94-100%) with each other. Variability was more common in the pathogenic domain of the viroid genome. Present isolates grouped with some Chinese and Korean isolates in phylogenetic analysis. The study reports seven new sequence variants of ASSVd and also gives a first molecular evidence of a viroid infection (ASSVd) in apple from India. Infectious clone of ASSVd were constructed for in vitro mutagenic studies. Keywords: Apple scar skin viroid, cloning, DNA sequencing, phylogenetic analysi

    A Density Matrix Renormalization Group Method Study of Optical Properties of Porphines and Metalloporphines

    Full text link
    The symmetrized Density-Matrix-Renormalization-Group (DMRG) method is used to study linear and nonlinear optical properties of Free base porphine and metallo-porphine. Long-range interacting model, namely, Pariser-Parr-Pople (PPP) model is employed to capture the quantum many body effect in these systems. The non-linear optical coefficients are computed within correction vector method. The computed singlet and triplet low-lying excited state energies and their charge densities are in excellent agreement with experimental as well as many other theoretical results. The rearrangement of the charge density at carbon and nitrogen sites, on excitation, is discussed. From our bond order calculation, we conclude that porphine is well described by the 18-annulenic structure in the ground state and the molecule expands upon excitation. We have modelled the regular metalloporphine by taking an effective electric field due to the metal ion and computed the excitation spectrum. Metalloporphines have D4hD_{4h} symmetry and hence have more degenerate excited states. The ground state of Metalloporphines show 20-annulenic structure, as the charge on the metal ion increases. The linear polarizability seems to increase with the charge initially and then saturates. The same trend is observed in third order polarizability coefficients.Comment: 13 pages, 6 figure

    Evidence for a long-lived superheavy nucleus with atomic mass number A=292 and atomic number Z=~122 in natural Th

    Full text link
    Evidence for the existence of a superheavy nucleus with atomic mass number A=292 and abundance (1-10)x10^(-12) relative to 232Th has been found in a study of natural Th using inductively coupled plasma-sector field mass spectrometry. The measured mass matches the predictions [1,2] for the mass of an isotope with atomic number Z=122 or a nearby element. Its estimated half-life of t1/2 >= 10^8 y suggests that a long-lived isomeric state exists in this isotope. The possibility that it might belong to a new class of long-lived high spin super- and hyperdeformed isomeric states is discussed.[3-6]Comment: 14 pages, 5 figure

    Effect of plant-growth-promoting rhizobacteria inoculation on plant growth, productivity and economics of Basmati rice

    Get PDF
    A field experiment was conducted in a wet season (Kharif) to study the effects of plant growth-promoting rhizobacteria(PGPR) inoculation on agronomic traits and productivity of Basmati rice (cv. ‘Pusa Basmati 1401’) in a randomized block with twelve treatments. We evaluated one bacterial (Providencia sp. PW5) and one cyanobacterial strain (Anabaena sp. CR3), and also a Multani mitti (Fuller’s earth)-based blue-green algal biofertilizer (a composite culture of Anabaena, Nostoc, Tolypothrix and Aulosira sp.). Plant growth, yield attributes, yield and net return of rice were significantly improved due to the rhizobacterial inoculation. The highest responses were recorded from combined inocula of bacteria and cyanobacteria together with compost.Keywords: Bacterial inoculants; BGA; cyanobacterial inoculants, PGPR; yield attributes
    corecore